A seven-year experiment shows that pond communities bear a lasting imprint of random events in their past.

Photo by Jon Chase
Students sample the more than 100 species of plants and animals that made a home in the ponds set in a field at Washington University's Tyson Research Center.
In graduate school, Jon Chase worked in a lab that set up small pond ecosystems in order to run experiments on species interactions and food webs. “And because this was an experimental science, we tried to replicate each pond system,” Chase says.
“We would try really, really hard to duplicate pond communities with a given experimental treatment,” he says, “putting 10 of this species in each pond, and five of these species, and eight of the other species, and 15 milliliters of this nutrient and 5 grams of that and SPROING, every replicate would do its own thing and nothing would be like anything else. “
“That made me curious. What if, instead of trying to eliminate the messiness, I tried to figure out where it was coming from.”
On May 27, the results of his investigation were published on the Science Express web site. The seven-year experiment isolated one reason experimental ponds go wild.
History.
If the ponds have enough nutrients, the pond community that emerges depends on the order in which species were introduced into the pond, says Chase, PhD., professor of biology in Arts & Sciences at Washington University and director of the university’s Tyson Research Center.
The discovery has broad implications for highly productive ecosystems such as tropical rainforests and coral reefs and for attempts to restore these ecosystems. Restoration can fail if the original ecosystem bears the imprint or memory of its past in ways that were not understood.
“We would try really, really hard to duplicate pond communities with a given experimental treatment,” he says, “putting 10 of this species in each pond, and five of these species, and eight of the other species, and 15 milliliters of this nutrient and 5 grams of that and SPROING, every replicate would do its own thing and nothing would be like anything else. “
“That made me curious. What if, instead of trying to eliminate the messiness, I tried to figure out where it was coming from.”
On May 27, the results of his investigation were published on the Science Express web site. The seven-year experiment isolated one reason experimental ponds go wild.
History.
If the ponds have enough nutrients, the pond community that emerges depends on the order in which species were introduced into the pond, says Chase, PhD., professor of biology in Arts & Sciences at Washington University and director of the university’s Tyson Research Center.
The discovery has broad implications for highly productive ecosystems such as tropical rainforests and coral reefs and for attempts to restore these ecosystems. Restoration can fail if the original ecosystem bears the imprint or memory of its past in ways that were not understood.
No comments:
Post a Comment